package scala.lms.tutorial
import scala.lms.common._
object query_optc {
trait QueryCompiler extends Dsl with StagedQueryProcessor
with ScannerLowerBase {
override def version = "query_optc"
class Scanner(name: Rep[String]) {
val fd = open(name)
val fl = filelen(fd)
val data = mmap[Char](fd,fl)
var pos = 0
def next(d: Rep[Char]) = {
val start = pos: Rep[Int] // force read
while (data(pos) != d) pos += 1
val len = pos - start
pos += 1
RString(stringFromCharArray(data,start,len), len)
}
def nextInt(d: Rep[Char]) = {
val start = pos: Rep[Int] // force read
var num = 0
while (data(pos) != d) {
num = num * 10 + (data(pos) - '0').toInt
pos += 1
}
pos += 1
RInt(num)
}
def hasNext = pos < fl
def done = close(fd)
}
abstract class RField {
def print()
def compare(o: RField): Rep[Boolean]
def hash: Rep[Long]
}
case class RString(data: Rep[String], len: Rep[Int]) extends RField {
def print() = prints(data)
def compare(o: RField) = o match { case RString(data2, len2) => if (len != len2) false else {
// TODO: we may or may not want to inline this (code bloat and icache considerations).
var i = 0
while (i < len && data.charAt(i) == data2.charAt(i)) {
i += 1
}
i == len
}}
def hash = data.HashCode(len)
}
case class RInt(value: Rep[Int]) extends RField {
def print() = printf("%d",value)
def compare(o: RField) = o match { case RInt(v2) => value == v2 }
def hash = value.asInstanceOf[Rep[Long]]
}
type Fields = Vector[RField]
def isNumericCol(s: String) = s.startsWith("#")
case class Record(fields: Fields, schema: Schema) {
def apply(key: String): RField = fields(schema indexOf key)
def apply(keys: Schema): Fields = keys.map(this apply _)
}
def processCSV(filename: Rep[String], schema: Schema, fieldDelimiter: Char, externalSchema: Boolean)(yld: Record => Rep[Unit]): Rep[Unit] = {
val s = new Scanner(filename)
val last = schema.last
def nextField(name: String) = {
val d = if (name==last) '\n' else fieldDelimiter
if (isNumericCol(name)) s.nextInt(d) else s.next(d)
}
def nextRecord = Record(schema.map(nextField), schema)
if (!externalSchema) {
// the right thing would be to dynamically re-check the schema,
// but it clutters the generated code
// schema.foreach(f => if (s.next != f) println("ERROR: schema mismatch"))
nextRecord // ignore csv header
}
while (s.hasNext) yld(nextRecord)
s.done
}
def printSchema(schema: Schema) = println(schema.mkString(defaultFieldDelimiter.toString))
def printFields(fields: Fields) = {
if (fields.nonEmpty) {
fields.head.print
fields.tail.foreach { x => printf(defaultFieldDelimiter.toString); x.print }
}
println("")
}
def fieldsEqual(a: Fields, b: Fields) = (a zip b).foldLeft(unit(true)) { (a,b) => b._1 compare b._2 }
def fieldsHash(a: Fields) = a.foldLeft(unit(0L)) { _ * 41L + _.hash }
def evalPred(p: Predicate)(rec: Record): Rep[Boolean] = p match {
case Eq(a1, a2) => evalRef(a1)(rec) compare evalRef(a2)(rec)
}
def evalRef(r: Ref)(rec: Record): RField = r match {
case Field(name) => rec(name)
case Value(x:Int) => RInt(x)
case Value(x) => RString(x.toString,x.toString.length)
}
def resultSchema(o: Operator): Schema = o match {
case Scan(_, schema, _, _) => schema
case Filter(pred, parent) => resultSchema(parent)
case Project(schema, _, _) => schema
case Join(left, right) => resultSchema(left) ++ resultSchema(right)
case Group(keys, agg, parent)=> keys ++ agg
case HashJoin(left, right) => resultSchema(left) ++ resultSchema(right)
case PrintCSV(parent) => Schema()
}
def execOp(o: Operator)(yld: Record => Rep[Unit]): Rep[Unit] = o match {
case Scan(filename, schema, fieldDelimiter, externalSchema) =>
processCSV(filename, schema, fieldDelimiter, externalSchema)(yld)
case Filter(pred, parent) =>
execOp(parent) { rec => if (evalPred(pred)(rec)) yld(rec) }
case Project(newSchema, parentSchema, parent) =>
execOp(parent) { rec => yld(Record(rec(parentSchema), newSchema)) }
case Join(left, right) =>
execOp(left) { rec1 =>
execOp(right) { rec2 =>
val keys = rec1.schema intersect rec2.schema
if (fieldsEqual(rec1(keys), rec2(keys)))
yld(Record(rec1.fields ++ rec2.fields, rec1.schema ++ rec2.schema))
}
}
case Group(keys, agg, parent) =>
val hm = new HashMapAgg(keys, agg)
execOp(parent) { rec =>
hm(rec(keys)) += rec(agg)
}
hm foreach { (k,a) =>
yld(Record(k ++ a, keys ++ agg))
}
case HashJoin(left, right) =>
val keys = resultSchema(left) intersect resultSchema(right)
val hm = new HashMapBuffer(keys, resultSchema(left))
execOp(left) { rec1 =>
hm(rec1(keys)) += rec1.fields
}
execOp(right) { rec2 =>
hm(rec2(keys)) foreach { rec1 =>
yld(Record(rec1.fields ++ rec2.fields, rec1.schema ++ rec2.schema))
}
}
case PrintCSV(parent) =>
val schema = resultSchema(parent)
printSchema(schema)
execOp(parent) { rec => printFields(rec.fields) }
}
def execQuery(q: Operator): Unit = execOp(q) { _ => }
// defaults for hash sizes etc
object hashDefaults {
val hashSize = (1 << 8)
val keysSize = hashSize
val bucketSize = (1 << 8)
val dataSize = keysSize * bucketSize
}
// common base class to factor out commonalities of group and join hash tables
class HashMapBase(keySchema: Schema, schema: Schema) {
import hashDefaults._
val keys = new ArrayBuffer(keysSize, keySchema)
val keyCount = var_new(0)
val hashMask = hashSize - 1
val htable = NewArray[Int](hashSize)
for (i <- 0 until hashSize) { htable(i) = -1 }
def lookup(k: Fields) = lookupInternal(k,None)
def lookupOrUpdate(k: Fields)(init: Rep[Int]=>Rep[Unit]) = lookupInternal(k,Some(init))
def lookupInternal(k: Fields, init: Option[Rep[Int]=>Rep[Unit]]): Rep[Int] =
comment[Int]("hash_lookup") {
val h = fieldsHash(k).toInt
var pos = h & hashMask
while (htable(pos) != -1 && !fieldsEqual(keys(htable(pos)),k)) {
pos = (pos + 1) & hashMask
}
if (init.isDefined) {
if (htable(pos) == -1) {
val keyPos = keyCount: Rep[Int] // force read
keys(keyPos) = k
keyCount += 1
htable(pos) = keyPos
init.get(keyPos)
keyPos
} else {
htable(pos)
}
} else {
htable(pos)
}
}
}
// hash table for groupBy, storing sums
class HashMapAgg(keySchema: Schema, schema: Schema) extends HashMapBase(keySchema: Schema, schema: Schema) {
import hashDefaults._
val values = new ArrayBuffer(keysSize, schema) // assuming all summation fields are numeric
def apply(k: Fields) = new {
def +=(v: Fields) = {
val keyPos = lookupOrUpdate(k) { keyPos =>
values(keyPos) = schema.map(_ => RInt(0))
}
values(keyPos) = (values(keyPos) zip v) map { case (RInt(x), RInt(y)) => RInt(x + y) }
}
}
def foreach(f: (Fields,Fields) => Rep[Unit]): Rep[Unit] = {
for (i <- 0 until keyCount) {
f(keys(i),values(i))
}
}
}
// hash table for joins, storing lists of records
class HashMapBuffer(keySchema: Schema, schema: Schema) extends HashMapBase(keySchema: Schema, schema: Schema) {
import hashDefaults._
val data = new ArrayBuffer(dataSize, schema)
val dataCount = var_new(0)
val buckets = NewArray[Int](dataSize)
val bucketCounts = NewArray[Int](keysSize)
def apply(k: Fields) = new {
def +=(v: Fields) = {
val dataPos = dataCount: Rep[Int] // force read
data(dataPos) = v
dataCount += 1
val bucket = lookupOrUpdate(k)(bucket => bucketCounts(bucket) = 0)
val bucketPos = bucketCounts(bucket)
buckets(bucket * bucketSize + bucketPos) = dataPos
bucketCounts(bucket) = bucketPos + 1
}
def foreach(f: Record => Rep[Unit]): Rep[Unit] = {
val bucket = lookup(k)
if (bucket != -1) {
val bucketLen = bucketCounts(bucket)
val bucketStart = bucket * bucketSize
for (i <- bucketStart until (bucketStart + bucketLen)) {
f(Record(data(buckets(i)),schema))
}
}
}
}
}
// column-oriented array buffer, with a row-oriented interface,
// specialized to data representation
abstract class ColBuffer
case class IntColBuffer(data: Rep[Array[Int]]) extends ColBuffer
case class StringColBuffer(data: Rep[Array[String]], len: Rep[Array[Int]]) extends ColBuffer
class ArrayBuffer(dataSize: Int, schema: Schema) {
val buf = schema.map {
case hd if isNumericCol(hd) => IntColBuffer(NewArray[Int](dataSize))
case _ => StringColBuffer(NewArray[String](dataSize), NewArray[Int](dataSize))
}
var len = 0
def +=(x: Fields) = {
this(len) = x
len += 1
}
def update(i: Rep[Int], x: Fields) = (buf,x).zipped.foreach {
case (IntColBuffer(b), RInt(x)) => b(i) = x
case (StringColBuffer(b,l), RString(x,y)) => b(i) = x; l(i) = y
}
def apply(i: Rep[Int]) = buf.map {
case IntColBuffer(b) => RInt(b(i))
case StringColBuffer(b,l) => RString(b(i),l(i))
}
}
}}
Comments? Suggestions for improvement? View this file on GitHub.